

緊固螺帽動態敲擊振動後 之磨耗特性與形態

文 / 國立勤益科技大學機械工程系(所)教授 緊固邊界產學技術聯盟主持人 陳志明

文主要探討工具機及專用機產業或 其他常用於動態環境惡劣及螺帽易 鬆脱的場合下之緊固螺帽以動態敲擊試驗 機進行實驗,實驗前後分別以表面粗度輪廓 儀、真圓度儀、表面粗度儀、工具顯微鏡等儀 器去觀察試驗前後螺帽的表面粗糙度、平面 度、表面形態以及牙面粗糙度、牙角、螺距等 變化。其結果於實驗後工具顯微鏡發現到端 面、牙面產生明顯破壞並且實驗後平面度表 面粗糙度也有變差的趨勢,而在牙面表面粗 糙度、牙角也產生了變化,在螺距部分則無明 顯巨大改變。

緊固螺帽之理論

鎖緊扭矩T_F可表示為:

 $T_F = KFd_m$ (1)

[1]式中F為鎖緊時之軸向力;d_m為螺紋有效 直徑;K為鎖緊時的力矩係數:

$$K = \frac{1}{2} \left[\frac{(\tan \beta + \mu \sec \alpha)}{(1 - \mu \tan \beta \sec \alpha)} + \frac{d_w \mu_w}{d_m} \right] (2)$$

帽的鬆脫力矩T_為:

 $T_L = K'Fd_m$ (3)

[3]式中F為鎖緊時之軸向力;d_m為螺紋有效 直徑。K'為鬆脫時的力矩係數:

$$\mathbf{K} = \frac{1}{2} \left[\frac{(-\tan\beta + \mu \sec\alpha)}{(1 + \mu \tan\beta \sec\alpha)} + \frac{\mathbf{d}_{w} \mu_{w}}{\mathbf{d}_{m}} \right] [4]$$

d_m為螺紋有效直徑;μ為螺紋面摩擦係數; β為導程角;α為½螺紋角;座面摩擦的作用面 平均直為d_w;座面摩擦係數為μ_w。

為了更詳盡描述緊固螺帽的動態緊固性 能,本團隊將其性能指標定義為軸力比:

$$F_{\rm r} = \frac{F_{\rm t}}{F_{\rm i}} \tag{5}$$

[5]式中F,為軸力比,F,為初始預壓力,F,為經過振動後之預壓力。

對緊固螺帽施加的週期性振動為:

$$f = \frac{1}{\tau} \tag{6}$$

[6]式中T為周期性運動來回一趟時間,時間T稱為週期,其頻率f為週期之倒數。

實驗原理

2.1 動態試驗

動態螺帽振動試驗機原理(如圖一所示),首先設置實驗條件之振幅大小與頻 率,將螺帽裝置完畢,施加實驗設定條件之鎖緊力矩,將螺帽鎖固,記錄其螺帽鎖固 後之軸向力幅度以及振幅大小並且量測試驗前溫度,實驗前置動作完畢,接著啟動 開關後,馬達藉由皮帶傳達動力帶動偏心盤產生直線往復運動,使螺帽鬆脱,同時 軸向力感測元件將擷取到的資料傳送至控制面板,將其數值紀錄,在到達預設之次 數後將會自動停機,量測實驗後之溫升以及試驗後軸向力幅度與試驗後振幅將其記 錄,最後使用數位扭力扳手進行鬆脱試驗,藉由此試驗觀察經過動態振動試驗後,螺 帽之鬆脱力矩與軸向力遞減之關係。

圖一:固鎖螺帽敲擊試驗示意圖

2.2緊固件帽的鬆脫力矩量測

測量緊固螺帽鬆脱力矩的方法是使用 數位式扭力扳手進行緊固螺帽的鬆卸,藉此 達到量測的目的,步驟為先將將數位式扭力 扳手連接至資料擷取器後再連線至電腦上, 以手握持扭力扳手並以逆時針方向緩緩施 加力量,直到緊固螺帽產生轉動即停止施加 力量,至此即可獲得緊固螺帽的鬆脱力矩。

實驗設備及樣品

3.1 實驗設備

Preset型扭力扳手

本文係使用Preset型扭力扳手施加鎖定 螺絲的固定扭矩,在預設下的試驗條件中進行 動態試驗,並使用數位扭力扳手來測量精密鎖 定螺帽鬆脱扭矩。實驗使用之扭力扳手其扭 矩精度均符合ISO-6789規範。扭力扳手之詳細 規格如下:

60QL-TOHNICHI(使用範圍:1.96 N·m~5.88 N·m)

120QLK-KANON(使用範圍:3.92 N·m~11.76 N·m)

230QLK-KANON(使用範圍:6.68 N·m~22.55 N·m)

數位扭力扳手

數位扭力扳手:主要作精密固鎖螺帽 鬆脱扭矩的測量,扭力扳手之詳細規格為 TAT510-FUTEK(最大測量扭矩:1017 N·m)。

緊固件振動試驗機

為了使其實驗更加貼近業界實際應用之 狀態,使其數據更符合業界所需,螺帽振動 敲擊試驗機。其螺帽適用範圍:最大可檢測到 公稱直徑50mm。振幅範圍:可依照螺帽規格 來進行調整,而振幅距離在自由狀態下可由 0.2 mm至10 mm。轉速範圍:振動頻率最高 可達30 Hz。感測元件:最大可量測軸向力到 30000kgf。

表面粗糙度測定儀

此外,本實驗使用之表面粗糙度量測使 用日本Mitutoyo表面粗糙度測定儀-210型,其 測定範圍:縱方向[Z]14200µin,橫方向V[X]-17.5mm,解析度:1000µm/.08µin。驅動速 度:0.1,0.2,0.3 in/s;測針尖端半徑:2µm。 對於表面粗糙度的表示法,國際間均已標準 化,最常見的表示法是中心線平均粗糙度Ra (Arithmetic mean roughness value),ISO/ DIS 4287/1;Ra之定義為整個樣本長度上中心 線距離外形偏差值的算數平均數。

真圓度量測儀

本文使用日本Mitutoyo真圓度儀可測量各種精密機械零件的圓度形狀參數,真 圓度、真直度、平面度、圓筒度、平行度、垂直度、傾斜度、同心度、同軸度、對稱度、 偏擺度、位置度,其測定範圍:最大探測直徑:280mm,最大工件直徑:440mm,最 大工件重量:20kg,最大測量高度:280mm,最大測量深度:100mm,測針測量範圍: ±1000 mm,旋轉速度:6rpm。本文選用最小平方圓法(Least Squares Circle. LSC)來 表示平面度,單位為µm。

表面粗度輪廓測量儀

為了量測螺帽的牙面輪廓以及表面粗糙度,本文使用德國JENOPTIK hommeletamic T8000,可以同時量測粗糙度以及輪廓,並且分析其幾何特性。測針垂直量 測範圍:6mm;解析度:6nm;最大量測高度400mm;符合德國DIN4772規範一級標 準精度。

3.2 實驗樣品

標準治具

本實驗用來模擬滾珠螺桿、精密主軸等之標準螺栓,採用鉻鉬 合金鋼SCM21硬度HRC55~58,外螺紋精度為依據ISO 965-3:1998 公差等級4h精密研磨加工。

緊固螺帽

緊固螺帽採用祥開有限公司[NIKKI]所生產的縮緊鎖定精密 固鎖螺帽,其幾何尺寸如圖三所示;材質為鉻鉬合金鋼SCM440; 硬度為HRC28~32;內螺紋精度為依據ISO 965-3:1998公差等級 4H精密車削加工。該螺帽鎖定方式,為利用鋼材本身的彈性,以軸 向鎖固,強制鎖定;精密鎖定螺帽中的緊定螺絲,材質為鉻鉬合金 鋼SCM435硬度為HRC45~53,並符合ISO 898-1:1999規範。本實 驗所使用的螺帽規格為MKR M25×1.5P,M25表示公制螺紋外徑 25mm;1.5表示螺紋螺距為1.5mm,螺帽外觀最大直徑D為45mm、 螺帽厚度h為22mm、螺帽端面外圍直徑d為36.5mm、螺帽施力溝 槽寬度g 為4.3mm,其鎖定螺絲規格為M4。

潤滑油

採用德國Lubricant Consult GmbH所生產製造的潤滑油,德國 Lubricant Consult GmbH是全球潤滑工程領域的頂級研發和生產 製造企業,其生產製造的潤滑油有極高的可靠度,並可滿足於特定 環境下的抗磨減摩、降噪、延壽等優點,深受業界喜愛。本研究計 畫使用之潤滑油詳細資料如下:

THERMOPLEX 2 TML是一種低噪音的全合成特殊油脂,能保 證在高速時降低啟動摩擦及運轉摩擦。這種產品能符合在極廣溫 度範圍之高速及高負載的需求。用於滾動及抗摩擦軸承,特別是紡 織及工具機高速軸承、通風機及高速心軸軸承。其外觀顏色為米 黃色,基礎油黏度依據 DIN EN ISO 3104分別為55 mm2/s [40℃]; 9 mm2/s [100℃],稠度等級[DIN51818]為等級2,溫度範圍:-35℃~ +160℃。

結果與討論

4.1 緊固螺帽之動態機械性能

4.1.1 軸力比

本研究主要探討緊固螺帽經動態實驗後的機械性能及緊固邊 界表面型態變化,圖四為緊固螺帽的振動次數與軸向力值得關係 圖,由此圖可得知緊固螺帽經振動試驗後軸向力下降約38.5%左右。

4.1.2 動態試驗數據

表一及表二為動態實驗所得之數據,從表中可得知螺帽本體 經鎖固後振幅為±1.01mm;螺帽本體鎖固後軸向力介於10.032KN 至10.2555KN之間;而緊定螺絲鎖固後軸向力介於9.313KN至 9.739KN之間;螺帽本體扭緊力矩介於59.158N·m至69.258N·m;而 實驗後鬆脱力矩介於-51.745 N·m至-75.2675 N·m間;而實驗前螺 帽本體重量介於137.869g至138.209g間,實驗後則介於137.859g至 138.129g間,而磨耗量則在0.01g至0.08g間;實驗前後的溫差則都 在5℃之內。

表一:動態試驗數據

編 號	振動幅度 (mm)	軸向力幅度 (KN)	鎖固緊定螺絲後軸向力(KN)
1	±1.01	10.255	9.739
2	±1.01	10.113	9.556
3	±1.01	10.032	9.313

表二:動態試驗數據

編 號	扭緊 力矩	鬆脫力矩	初始 溫度	實驗後 溫度	實驗前 重量	實驗後 重量
1	59.158 N.m	51.745 N.m	26°C	29.9°C	138.209g	138.129g
2	69.258 N.m	75.627 N.m	25.6°C	28.9℃	137.918g	137.881g
3	63.89 N.m	68.94 N.m	23.7℃	28°C	137.869g	137.859g

4.2 緊固螺帽之表面型態觀察與量測

4.2.1 表面型態觀察

圖五為緊固螺帽經動態實驗前後的表面型態變化,且損壞在 接近端面的第一牙中更為嚴重,損壞程度明顯大於其他牙,由此可 判斷緊固螺帽在固鎖後,第一牙所承受的壓力最大。

圖五:試驗前後牙面情況

圖六為緊固螺帽於實驗前所拍攝的表面型態,在圖中可看見 表面有許多大小不等的小孔洞,孔洞的大小約在10~30µm之間,此 為端面在加工的時候承受反覆的剪應力所導致的金屬疲勞現象, 此亦為多數金屬加工表面常見之現象。

(b)

圖六:實驗前端面影像之一

從圖七為緊固螺帽在實驗後的表面型態,圖八中有許多大小 不等的坑洞,其形成即為金屬的小孔洞持續反覆受力而使金屬表 面下的裂紋逐漸增加,最終金屬表面產生剝落,此為典型的金屬 疲勞現象。

圖七:實驗後端面情況之二

圖八為緊固螺帽端面與軸承之接觸邊界,在圖中可清楚看到 緊固螺帽端面產生一溝槽,在磨耗機制中我們稱為刮損磨耗,一般 在硬度較高的金屬所看見的形式會是明顯的切痕,在硬度較低的 金屬則會呈現一不規則狀的溝槽,如圖中所示。

圖八: 實驗後端面情況之三

4.2.2 平面度量測

表三為螺帽端面實驗前後量測,從表中可以發現,由於內圈是 與軸承接觸面故平面度上升而外圈則無與軸承接觸故於實驗前無 差異。

表三:平面度

	Sample	1	2	3
In state	Before the experiment	0.393	0.407	0.379
Inside	After the experiment	1.729	1.910	2.000
Outcido	Before the experiment	2.464	1.525	2.050
Outside	After the experiment	1.729	1.761	1.910

4.2.3 端面粗糙度量測

表四為試驗前其端面表面粗糙度,每顆緊固螺帽皆量取四次 以確保實驗準確度。

4.2.4 螺紋面粗糙度量測

以下為緊固螺帽經振動試驗前後之螺紋角度變化情形,圖九 為緊固螺帽之螺紋面名稱示意圖,表五為螺帽牙面試驗前後表面 粗糙度量測,量測點為與緊定螺絲相鄰的牙面,靠近端面的牙面本 文稱Front,牙頂部分本文稱作Top,靠近螺帽背面的牙面部分稱做 Rear •

4.2.5 螺紋角度量測

表六及表七為螺帽牙面試驗前後輪廓幾何量測,量測點為緊 定螺絲水平區域牙面;表八及表九為螺帽牙面試驗前後輪廓幾何 量測,點測點第二點為兩緊定螺絲中間區域。表十為Sample 3實驗 前後的牙面表面粗糙度測量分析,由此表與表五做比較可發現在 實驗後的第一牙Sample 3的表面粗糙度偏小,並且第六牙表面粗 糙度偏高。

結論

緊固螺帽經由動態試驗後軸力比平均衰退38.5%;實驗前從工 具顯微鏡就可觀察到有許多小孔穴,並且實驗後擴大造成端面破 壞;在平面度部分,由於內圈是與軸承接觸面,故實驗後造成接觸 面平面度變差;動態實驗後磨耗量介0.238µm至0.596µm、Rz介於 101q~0.08q之間;端面表面粗糙度由於只有內圈與螺帽端面接觸故 Ra值變化不大;牙面表面粗糙度部分可以得知實驗後第一牙破壞 最大並且只有Front面破壞較為嚴重,其他則是無明顯差異;從牙 面幾何量測中可得知實驗後牙角會變小但螺距無明顯差異,而固 鎖螺帽經振動敲擊試驗後軸力比會有明顯降低。

表四:緊固螺帽試驗前後端面表面粗糙度

Туре	Sample	Point	1	2	3	4	Average
	Sample 1	Ra(µm)	0.081	0.102	0.145	0.100	0.107
		Rz(µm)	0.635	5.987	0.990	0.820	2.108
		Rt(μm)	0.774	1.121	2.205	0.988	1.272
		Ra(µm)	0.144	0.098	0.232	0.254	0.182
實驗前	Sample 2	Rz(μm)	1.188	0.882	1.675	1.791	1.384
		Rt(µm)	2.234	1.178	2.454	3.433	2.325
		Ra(µm)	0.280	0.099	0.147	0.100	0.157
	Sample 3	Rz(µm)	1.779	0.833	1.006	0.823	1.110
		Rt(μm)	2.306	1.219	1.818	1.029	1.593
		Ra(µm)	0.127	0.139	0.132	0.133	0.133
	Sample 1	Rz(μm)	1.338	1.255	1.229	1.268	1.273
		Rt(µm)	2.580	3.153	2.572	3.051	2.839
		Ra(µm)	0.271	0.288	0.314	0.212	0.271
實驗後	Sample 2	Rz(µm)	1.946	3.208	2.900	2.320	2.594
		Rt(μm)	3.488	8.256	7.529	6.766	6.510
		Ra(µm)	0.292	0.465	0.315	0.335	0.352
	Sample 3	Rz(μm)	3.199	4.636	2.147	3.510	3.373
		Rt(µm)	8.750	10.478	5.603	9.589	8.605

表五:緊固螺帽試驗前後第一點牙面表面粗糙度

Thread			1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
	Front	Ra(µm)	-	0.297	0.238	0.264	0.260	0.241	0.460	0.585	0.526	0.596
Thread Before the experiment Before the experiment Top Rear	$R_z(\mu m)$	-	1.833	1.497	1.778	1.506	1.580	2.021	3.113	2.411	2.591	
	Rmax(μm)	-	3.369	2.630	2.729	2.424	2.527	2.359	3.995	3.272	3.356	
	Ten	Ra(µm)	-	0.356	0.627	0.665	0.485	-	-	0.480	0.448	0.453
	$R_z(\mu m)$	-	1.613	2.382	2.845	2.133	-	-	1.714	1.536	1.483	
'	Rmax(µm)	-	1.835	4.157	4.439	2.562	-	-	2.412	2.264	2.349	
	Door	Ra(µm)	0.227	0.048	0.051	0.045	0.054	0.361	0.056	0.066	0.062	0.060
	Rear Rz(µm)	0.551	0.232	0.248	0.217	0.260	1.723	0.258	0.305	0.273	0.259	
	Rmax(μm)	1.408	0.269	0.289	0.296	0.329	2.365	0.348	0.386	0.356	0.297	
	Front	Ra(µm)	1.135	0.810	0.804	0.909	0.830	0.824	0.385	0.777	0.811	0.874
	Front Rz(µm)	5.438	3.544	4.195	4.613	3.649	3.801	1.886	3.570	4.137	3.965	
	Rmax(µm)	16.84	4.272	4.145	5.571	5.739	4.373	2.537	3.796	5.276	5.600	
Before the	Ra(µm)	-	0.359	0.529	0.551	0.484	-	-	0.642	0.493	0.472	
experiment Top	Rz(µm)	-	1.488	2.259	2.260	1.586	-	-	3.006	1.827	1.503	
Top Rear	Rmax(µm)	-	1.925	3.342	3.014	2.405	-	-	4.503	2.530	2.406	
	Ra(µm)	0.1	0.140	0.258	0.145	0.315	0.312	0.077	0.347	0.105	0.112	
	Rz(µm)	0.607	0.846	1.595	0.868	1.590	1.458	0.443	2.167	0.520	0.529	
	Rmax(µm)	2.194	2.564	5.566	2.982	3.367	1.636	0.947	8.918	1.155	0.751	

96 技術論壇

表六:緊固螺帽試驗前第一點牙面輪廓

	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th
牙頂	87.13	59.84	59.79	59.69	59.73	94.01	86.79	60.37	59.70	59.67	98.48
牙底	-	59.00	59.74	59.68	59.82	-	60.39	59.76	59.65	59.84	-
Ditah	1.021		1.501		1.163		1.23		1.5		-
FIICN	-	1.501		1.5		-		1.496		1.149	

表七:緊固螺帽試驗後第一點牙面輪廓

	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th
牙頂	90.36	62.00	59.09	58.49	59.66	92.83	86.88	58.50	58.36	58.15	99.75
牙底	62.45	58.52	58.76	58.63	59.53		59.46	57.90	58.35	60.34	
Ditab	1.072		1.501		1.147		1.248		1.503		-
Pitch	-	1.463		1.492		-		1.490		1.131	

表八:緊固螺帽試驗前第二點牙面輪廓

	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th
牙頂	99.768	59.884	59.761	60.291	59.899	92.332	85.190	59.737	59.698	59.695	59.954	98.022
牙底	59.824	59.878	60.339	59.687	59.863		59.861	59.709	59.684	59.697	59.915	
Ditab	1.169		1.507		1.032		0.993		1.500		1.003	
Pitch		1.503		1.492				1.501		1.497		

表九:緊固螺帽試驗後第二點牙面輪廓

	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th
牙頂	84.171	57.790	59.050	58.673	59.472	93.113	80.698	58.224	58.399	58.359	58.386	97.107
牙底	58.209	58.478	58.901	59.267	59.241		58.617	58.200	58.362	58.378	58.297	
Dital	1.208		1.502		1.001		1.021		1.501		1.012	
Pitch		1.053		1.051				1.499		1.499		

表十:Sample 3試驗前後第二點牙面表面粗糙度

Thread			1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th
		Ra(µm)	-	0.378	0.331	0.318	0.354	0.325	0.415	0.599	0.564	0.552	0.456	-
	Front	Rz(μm)	-	1.972	1.904	0.732	2.079	1.704	1.444	2.529	2.702	2.532	2.120	-
		Rmax(µm)	-	3.367	2.593	0.377	3.634	3.114	1.927	3.431	3.295	2.974	2.791	-
		Ra(µm)	-	-	2.458	0.428	0.455	-	-	0.427	0.497	0.579	-	-
實驗前	Тор	Rz(μ m)	-	-	7.113	1.134	1.440	-	-	0.866	1.245	1.734	-	-
		Rmax(µm)	-	-	13.772	1.735	1.931	-	-	1.206	1.638	2.483	-	-
		Ra(µm)	0.171	0.075	0.055	0.054	0.056	0.307	0.070	0.061	0.125	0.208	0.413	-
	Rear	Rz(μ m)	0.516	0.366	0.258	0.251	0.262	1.249	0.325	0.324	0.616	0.887	2.329	-
		Rmax(µm)	0.872	0.512	0.350	0.307	0.380	1.499	0.472	0.427	1.403	2.067	2.497	-
		Ra(µm)	0.466	0.843	0.726	0.726	0.758	1.050	0.467	0.843	0.726	0.768	0.758	1.050
	Front	Rz(μ m)	1.643	3.720	3.516	3.516	3.675	4.136	1.642	3.720	3.516	3.550	3.674	4.136
		Rmax(µ m)	2.209	4.184	3.804	3.804	4.420	4.633	2.209	4.184	3.804	4.310	4.420	4.632
		Ra(µm)		0.338	0.588	0.444	0.435			0.340	0.715	0.529	0.448	
實驗後	Тор	Rz(μm)		1.353	2.304	1.284	1.453			1.445	2.679	1.351	1.531	
		Rmax(µm)		1.604	4.509	2.161	2.222			1.809	6.145	1.761	1.793	
		Ra(µm)	0.061	0.341	0.170	0.181	0.104	0.298	0.061	0.341	0.170	0.181	0.104	0.298
	Rear	Rz(μm)	0.303	1.837	1.155	0.964	0.586	1.300	0.303	1.837	1.155	0.964	0.586	1.300
		Rmax(µm)	0.799	6.844	1.941	2.746	1.079	1.569	0.798	6.844	1.941	2.746	1.079	1.570