

扣件博士O\＆A：重新探究扭矩法

friction．Using the expression and supposing that the coefficients of friction of the thread surface and nut bearing surface are both 0.15 and 0.3 ， the amounts of nut factor are found to be 0.2 and 0.381 ．Consequently，when a bolted joint＇s coefficient of friction changes from 0.15 to 0.3 because of the increase of the surface roughness due to tightening and loosening， only 52% of the target axial force is generated even if you apply the same torque．We can also say that＂even if we apply the same torque，the axial force to be generated is almost inversely proportional to coefficient of friction．＂This is a noteworthy phenomenon in a bolted joint which is repeatedly fastened and loosened．Contrary to the above case，the coefficient of friction could become smaller than the initial value．In that case，we must pay attention to plastic deformation due to the excessive axial force．

Q4：
 I feel the loosening torque is smaller than the tightening torque． Is that so？

 That is right．When fastening threads，the male threads move up the thread surface along the helix， thereby generating axial force．The lead angle， which is the spiral angle of thread surface， is usually from 2 to 3 degrees．On the other hand，the male threads move down along the thread surface when being loosened；therefore， the loosening torque is usually smaller than the tightening torque．The ratio of the two torques can be calculated using an expression derived mechanically．For instance，when the coefficient of friction ranges from 0.1 to around 0.2 ，we can loosen the threads with a torque which is from 70% to 80% of the tightening torque．The ratio of the two torques decreases with smaller coefficient of friction and smaller nominal diameter．In contrast，the ratio gets quite large in fine threads．If you feel the loosening torque is too large，you should suspect the occurrence of＂seizure of threaded fasteners＂．
Reference

1．Toshimichi Fukuoka，＂Threaded Fasteners for Engineers and Design－Solid Mechanics and Numerical Analysis－＂，pp．76－100， Corona Publishing Co．，Ltd．（2015）

This is because＂even if you apply the same tightening torque，the value of axial force changes with coefficient of friction＂．As shown in the above expression，the nut factor is expressed as the function of coefficient of

